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1. INTRODUCTION 

For several years now, there has been a controversy, as recalled by Sba & Soo (1979) on the 
form of the pressure term in the phasic momentum equations of two-phase flow models. 

As already pointed out (e.g. Delhaye 1977) there should not be any controversy, since both 
forms are acceptable, provided the other terms in the equations are correctly written. The origin 
of the controversy is very simple indeed and, since this controversy is timemand effortm 
consuming, a new attempt to close it is deemed worthwhile. Such is the main purpose of this 
note. 

Surprisingly enough, there does not appear to be any controversy on the form of the 
pressure term in the phasic energy equations, but since the problem in analogous to the 
momentum equation problem, it is also considered hereunder. 

2. THE TWO FORMS OF THE MOMENTUM EQUATION FOR ONE PHASE 

The local-instantaneous linear momentum balance may be written: 

aprVr ~_ V . ( p r V r V r ) -  V. T r  - P r g  = O, [1] 
Ot 

the subscript K referring to the phase which is present at the particular point and instant t 

under consideration, p being the density, V the velocity, I" the (total) stress tensor and g the 
acceleration of gravity (or, more generally, the external force per unit of mass). The product 
V r V r  is the tensor product. 

Introducing in [1] the pressure P through the expression 

TK = - P  J +  eK, 

where I is the unit tensor and ¢ the deviatoric stress tensor, results in: 

[2] 

OpKVK b V.(pKVKVK) + VPK -- V.'TK -- PKg = O, 
Ot 

[3] 

which is strictly equivalent to [1]. 
The balance equations which are involved in the controversy are averaged equations. They 

are space-averaged (the forms obtained through either volume- or area- or segment-averaging 
being similar) and time-averaged (or statistically averaged, the forms obtained through either 
time-averaging or statistical averaging being similar). The two kinds of averaging operators 
are commutative (Delhaye & Achard 1976, 1977). Therefore it is possible, without loss of 
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generality, to deal hereunder with equations which are first, say, volume-averaged then 
time-averaged. More specifically, the volume-ayeraging is performed hereunder, as a typical 
example, over the volume OFK(z, t) occupied by the phase K between two fixed cross-sections 
located at z - (Az/2) and z + (Az/2) within a pipe, z being the abscissa along the pipe axis (It is a 
simple matter to apply the same procedure to the other cases. Consideration of the above 
volume is at the basis of most current models for pipe flows and in particular, when Az is taken 
as vanishingly small, at the basis of most one-dimensional models). 

The volume OFt is part of the volume °F(z, t) limited by the pipe wall and the two foregoing 
cross-sections. The volumetric concentration of phase K at time t within volume OF (void 
fraction or its complement to 1) is ag(z, t) = OFt/OF. The volume OFt is limited by a surface 
which may consist of three portions: 

A portion located in the cross-section planes. This portion does not usually contain 
interfaces, but it may in particular cases. 

A portion Cr(z, t) located on the pipe wall. 
A portion I(z, t) consisting of interfaces. 
Assuming the quantities involved are sufficiently regular, transformation of the volume- 

averaged equations derived from [1] or [3] into practical equations requires (Delhaye & Achard 
1976, 1977): 

a. Application of the Leibniz rule to transform 

f~'r °f--~g doF (z,t) Ot 

(fr being any vectorial--or scalarwfunction of space and time defined for phase K) into the 
time derivative of some function. It yields: 

o~fk 0 
fvKtz, t, - ~  d oF = ~ fvKtz. ,, fr d oF - f~tz. ,) fr(V " nr) d2-  fcrt~,, fr(vc " nr) d'2' [4] 

where nr  is the unit vector of the outside normal to I or Cr, and V s ' n r  and Vc 'nr  are 
respectively the speeds of displacement of surfaces I and Cr. The last term of [4] is usually 
omitted, since it is zero whenever the pipe wall is fixed with respect to the frame of 
reference. 

b. Application of the Gauss theorem to transform 

f~Kc~,t) V" f / r  d OF 

( ~ r  being any symmetric tensor--or vector--function of space and time defined for phase K) 
into the derivative with respect to z of some function. It yields 

f~'K ofy~ n d ~ + f  d2+fc  ffK nr  d2, V • ~7/r doF = ~z z ~tK" -~fr • nK " 
(z, t) (z, t) J l i z ,  t) r(z, 0 

where n is the unit vector of the Oz axis. 
Introducing the definition of the volume-average (Qr) of any quantity Qr over OFK 

[5] 

K d ~  ~ OFK(OK) = OFaK(QK) 

and using (pVV) • n = p ( V .  n)V, 
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'enables the instantaneous volume-averaged linear momentum equation to be written either: 
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whence 

-,.it2) 0 7 d t = Q (  t + -  - Q ( t -  =~Jt-(a,,2) Qdt. 

Therefore, time averaging [6] or [7] leaves the equations formally unchanged, except for the 
multiplication of every term by At and adjunction of the time averaging symbol, according to 

f t+(~t/2) Q dt ~ OAt 
-(At/2) 

Equations [6] and [7] are two forms of the momentum equationwhich are strictly equivalent. 
This can be easily verified by using [5] once more, with Mg = PKI. The result is 

0 d~ + fcx f~x VPxd~=-~f~x Pxn dT'+ f~ Pxnr Pxnrd~ 

(V+KCpKV+)) + 

-- ~ ( T'ar( 'l~ " n') + fl [pK(V lc - V l ) " nr]V r d~, + fl PlCnK d~, 

- fl(~x "nr)d~ + fcr[Pr(Vr-Vc) 'nr]Vrd~,+ fcrPrnrd~ 

[~ ('~r" nr) d~ - ~rar(px)g = 0 [6] 
K 

(starting from [1], with WK = Vr • n), or 

a (ot/.ar(prVr))+ 0 

f-z (~'aX(~K" n))+ ff [pK(VK - V,) • nr]Vu d~ 

-- ~ (~x " nr) d~, + fc [Pr(Vr-- Vc) " nr]Vr d~, 

" nx) d2 - ~'ar(pr)g = 0 [7] 

(starting from [3]). 
The first wall term is usually omitted in both of these equations, since it is zero whenever 

there is no mass transfer through the pipe wall. Also, the last differential term is usually 
neglected. 

Applying the Leibniz theorem yields, for any quantity Q which is a continuous function of 
time and with a constant time interval At: 

° f t + t ~ t ' 2 ' Q d t = Q ( t + ~ ) - Q ( t - ~ ) ,  
ot j t-(At]2) 
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i.e. 

j, f ~'arO~Pr)=-~z(~'ar(Pr)n)+ Prn r  dX + P rn r  dX [8] 
Cr 

term of [7] terms of [6]. 

3. D I S C U S S I O N  

As stated in the introduction, either [6] or [7] may be used, provided the interfacial and wall 
pressure terms are not omitted in [6] and provided they are modelled in a way which is 
consistent with the rest of the model. 

This point is important, since assumptions have to be made, in particular on the way to 
express the averaged quantities in terms of the main dependent variables. For example, in most 
one-dimensional models (in which the equations are obtained through division of [6] or [7] by 
Az, Az being made vanishingly small), the terms containing the pressure are evaluated, 
assuming that any nonuniformity of Pr within °fr and during the time interval At may be 
neglected. 

In this case, ~ being the cross-section area (or = ~Az), [8]) becomes, after division by Az 

OPt,= ~_ (MarPrn)+ Pr lim 1 [ft dX+ fcr nx dX], s~ar ~ ,, nr 
OZ (az-,O) "xZ 

which shows that, in [6], after division by Az, 

,, a ( s /ag) , ,  
lim l f f  PrnrdY+f~ 

(az-.O) ,aZ L J1 
(9) 

As a consequence of [9], the above assumption on Pr and the assumption that the interface 
and wall pressure terms in [6] are free from derivatives and can be rejected to the R.H.S. are 
not compatible. When, as it is often the case, both assumptions are made notwithstanding, the 
model is not consistent. It is then found that the set of partial differential balance equations is 
hyperbolic with [6] and is not hyperbolic with [7]. This brings out positively that the problem of 
the nature of the balance equation set is primarily a problem of mathematical form of the 
constitutive terms (interfacial and wall terms) as stated several times by the author (for 
instance in Bour6 1975, 1976), but certainly not a problem related to the choice between [6] and 
[7]. 

Consideration of the interfacial jump condition 

Xr { ft [Pr(V r - Vl) " nr]V r d~ + ft PrnK dX - f1~r " nr dE } + surface tension terms = O, 

which contains a term .1"i (PG- PL)nG dX (where the subscripts G and L refer respectively to 
the gas and liquid phases), leads to the following recommendations (Bour6 1978): 

In advanced models, in which Pa may be different from PL, use of form [6] should be 
preferred. 

In all other cases, form [7], which is more compact, should be preferred. 

4. THE TWO FORMS OF THE ENERGY EQUATION FOR ONE PHASE 

The local-instantaneous energy balance may be written 

[lo] 

E being the internal energy per unit of mass and J the superficial heat flux. 
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Introducing in [10] the enthalpy H per unit of mass through the expression 

pKEK = p~H~ - PK 

and using [2] results in an equation 

, [ , , .  _ , , , .+ [,,. v,, + , . ]  - , , , ,  . =o. 
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[11] 

[12] 

which is strictly equivalent to [10]. 
Following the procedure detailed in section 2 for the momentum equation enables the 

averaged energy equation to be written either: 

TnJ T m  

[~'aK(P~)I -- [~'aK((~ • n) .  VK)I + ~ [~'aK(JK" n)l 

+ f, p.(VK--V,)" nK (HK + Y'~) d~ + fl PgV," ng d X - f l  ( ' r "  rig) • VK dX 

+ f JK.n~d'~ + fc, PK(VK--Vc).nK(HK+Y~-)d'~ + fc,~ PKVc'nKdY~ 

- f  (~g .rig)" V,  dX + [ J~" n K d ~ '  Vag(pKV,)'g=O, [13] 
Jc,, J C K  

starting from [I0], or 

OPK 0 " " n)VK)] + ~Z [VaK(JK 
- -  °~aK l"~--I---~Z [°V'OtK(('t K "n)] 

+ f JK. n,~ d~ + fc P,4V~,- Vc)" nK (m +Y~) d~ 

[14] 

starting from [12]. 
The first wall term is usually omitted in both of these equations, since it is zero whenever 

there is no mass transfer through the pipe wall. The wall term involving the deviatoric stress 
tensor is also usually omitted, since it is zero whenever the pipe wall is fixed with respect to the 
frame of reference. Finally, the last two differential terms are usually neglected. 

Equations [13] and [14] are two forms of the energy equation which are strictly equivalent. 
This can be easily verified by using [4] once more with fK = PK. The result is 

• J~'K ~ ~ Px d o//.- PKVI" n g  d~ - PKVc" nK dX, 
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i.e. with a change of  sign, 

-°Far \ T /  - 0i [Var(Pr)] + PrV," nr d~, + PxVc" nx dX 

term of [14] terms of [13]. 

[151 

A discussion, similar to the discussion of section 3, can be made. In particular, the 
assumption used to derive [9] transforms [15], after division by Az, into 

lira ~ PKVt" nK d~ + PKVc" nr dY, = PK a(~ag) 
(Az-.O) r at ' 

[16] 

an equation which involves derivatives. 
When Pc may be different from PL, use of form [13] should be preferred. In all other cases, 

from [14], which is more compact, should be preferred. 

5. CONCLUSION 

It has been shown that, for the phasic momentum equations as well as for the phasic energy 
equations, two forms, which are strictly equivalent, can be used in two-phase flow modelling. 
They are given as [6] and [7] for the momentum equation, [13] and [14] for the energy equation. 
They are equivalent, provided, of course, they are correctly written. A widespread example of 
inconsistency has been discussed. 

Recommendations for the choice between the above forms have been made. 
Finally, it has been shown that occurence of complex characteristic directions is not related 

to the correct use of the above forms but to assumptions made on the mathematical forms of 
the inteffacial and wall constitutive terms. 
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